
1 | P a g e  
 

 
 

Digital Technology 
 
 

CPX / MakeCode 
Code and Challenges 

 
 
 
 
 
 
 
 
 
 
 
 

Version 1       Barry Butler 
2021        bbutl58@eq.edu.au   



2 | P a g e  
 

Content and Challenges 

Section Content Challenges 
A Introduction and First Program 

 
 

B CPX Buttons and Accelerometer 
 

 

C Loops and Variables  

D Sensors and Conditional Statements  

E Connecting External Devices  

F Connect a Potentiometer (Analog 
Sensor) 

 

G Connect a Soil Moisture Sensor 
(Analog Sensor) 

 

H Connect an Ultrasonic Sensor  

I Connect Servos   

J Connect Digital Sensors (e.g. 
Tracker, Collision Switch, Tilt Switch) 

 

K Connect Motors  

L Obstacle Avoidance/Line Follower 
Servo Vehicle 

 

M Propeller Vehicle with Steering  

 
  



3 | P a g e  
 

A. Introduction and First Program 
 

What Has It Got? 

The CPX has many sensors (inputs); outputs such as lights and sound; and drive servos, motors and other devices. 

 

 

Plug It In 

Connect the USB cable to the CPX by pushing it straight in the 
micro-B USB jack. 

 
DO NOT wiggle the USB cable as you put it in or take it out.  
Doing this will break the connector 

  



4 | P a g e  
 

Start Microsoft MakeCode 

In your browser type: 

  https://makecode.adafruit.com/ 
 

Click New Project to enter the coding window 

 
Your First Program 

The first program we will write is to blink all the pixels on and off. 

 

Use the Cheat Sheet to find code blocks.   

The pause block is found in the Loops section. 

 
Download and Save to the CPX 

 

1. Plug in the Circuit Playground Express. 

2. Press the reset button (in the middle) to go into BOOT mode. All the neopixels will turn green and the red 
led will pulse. This allows a new program to be downloaded. 

3. In MakeCode, click the pink Download button at the bottom left. 

4. Close the message that is displayed. 

5. In Finder (on a Mac) or the File Manager (in Windows) you should see the CPX show as CPLAYBOOT. 

6. Copy the downloaded file (with an extension uf2, from the Downloads folder) to the CPLAYBOOT folder. 

7. After copying, your code will run on the CPX. 

 

  



5 | P a g e  
 

Alter Your Program 

Look on the Cheat Sheet at the Light and Sound sections.  Select other blocks to add into your program.  You could: 

• set the light brightness 
• show an animation 
• show the light ring and change colours of each neopixel 
• play a tone 
• play a sound 
• set the sound volume 

When you have finished, click download again.  Copy the new uf2 file to the CPX (CPLAYBOOT). 

 

B. CPX Buttons and Accelerometer 
 

Use a Button to Turn On Lights 

Instead of the lights being turned on when code is downloaded, let’s turn on the lights when we press a button.  
Remove the <forever> loop, click the INPUT button and select the <on button click> block. 

Try both of these 

  

 

 
 

 

Use Buttons to Turn On and Off 

Try using the left button (A) to turn the light on, and the right button (B) to turn the light off. 

 

 
 

Add other blocks to run when the buttons are pressed, such as animations and sound.  



6 | P a g e  
 

Use the Connection Pads as Switches 

The CPX connection pads act as capacitance touch pads, that is, they respond to being touched.  This code uses pin 
A7 to turn the light on when it is touched and A1 to turn it off. 

 
 

 
Use the connection pads to play sounds.  See if you can play a simple tune. 

 

Shake It or Clap to Turn Lights On 

We can use the motion sensor (accelerometer) or microphone to turn on the lights. 

 

 
 

 

 
Add light animations and sound. 

  



7 | P a g e  
 

C. Loops and Variables 
 

Use a Repeat Loop to Repeat Actions 

There are several types of loops that can be used for repetitive actions.  The first is the Repeat loop.  Use this to 
make the lights blink a fixed number of times depending on the button or touch pad pressed. 

 

 

 

 
Substitute sounds instead of colours.  Where would you put code to set the brightness or volume?  Do that too. 

 

Variables 

We can use variables to store values, which can then be used later.  To create a variable: 

• click the Variable button 
• click on Make a Variable 
• type a name and click OK 

 

The list then shows blocks to: 

• get the value of the variable 
• set the value of the variable 
• change the value of the variable by a set quantity 

 

  



8 | P a g e  
 

Use a While Loop to Turn on Individual Lights 

Repeat loops are great for very simple repetitive tasks.  What if we want to turn each neopixel in sequence.  We use 
a while loop and a variable to do that.  First create a variable called pos. 

1.  Add the loop     2. Add the variable pos:     3. Test if the value of pos: 
           set initial value to zero   has it reached the last value 
    

  

 
 

count up   To find comparisons, click the Logic button 
4.  Do something inside the loop…        

 

The Completed Loop 

 

 

 

turn on the neopixel 

 

turn off the neopixel 

 

 

 
You must set the value of the variable (pos) before the loop and change its’ value at the end of each loop – or it 
won’t work. 

  



9 | P a g e  
 

Turning on Neopixels in Reverse 

A while loop can start at a high number and end at a low number.  We can use that to turn on each neopixel in 
reverse. 

 

Start at 9 

Stop when pos gets to zero 

 

 

 

Count down 

 

 
CPX Challenges 
 
• Change the code to show every second or third neopixel 
• Write a program to play tones, starting at 50 (hz) and going up by 100 at a time, until 5000 (hz) is reached.  Then 

do the reverse. 
• Write a program to smoothly change the colour of all the neopixels.  Hint: The value of hue is 0 to 255. 
 
 
• Show all neopixels then brighten or dim them all (0-100) 

  



10 | P a g e  
 

D. Sensors and Conditional Statements 
 

Read the Light Sensor 

To read and information from sensors, variables must be used to 
store the sensor values.  Information can be displayed in the form of 
the neopixel graph.  First, create a variable called light. 

 

Pass your phone light over, then away from, the CPX light sensor.  
Watch the neopixel graph. 

 

Responding to Light Sensor Values 

We can respond to sensor values (inputs) in many other ways – turn on lights, change light brightness, play sounds, 
and turn on motors or servos (all of these are outputs). 

To use sensor values, they must be mapped 
to the range of values required by the 
output.   

 

 

Using the Map Block 

Click the Math button and select the map block, to change (or map) the range of input values to the range of the 
output values.  Variables are used to store the input and output values. 

For example, to play a tone depending on the light level:  

 

 

 

 

 

 

 

CPX Challenges 
• Map the light sensor value to neopixel brightness 

• Make neopixels brighter as the light sensor value decreases (try reversing the map low and high values) 

• Change the colour (hue) of neopixels depending on the light sensor value 



11 | P a g e  
 

Conditional Statements (if-else) 

Conditional statements are decision statements.  In other words, if a condition is true then a sequence of code is 
executed.  If it is b, a different sequence of code is executed (or no code is executed). 

 

 

 

 
If statements allow different actions to occur each side of a threshold (in this case a light sensor value of 120) 

 

Multiple Conditional Statements 

Conditional statements can have more than 2 levels: 

 
Add sounds, light brightness, animations, repeat loops (to make lights flash on and off), and additional levels. 

 

CPX Challenges  
• Use if-then statements to test whether button A or B is pressed (or was 

pressed) and take different actions.  Use this template. 
 
• Use if-then statements to test whether any of the touch pads is pressed (or 

was pressed) and take different actions. 

 



12 | P a g e  
 

E. Connecting External Devices 
 

Coding the CPX to Communicate with External Devices 

1.  Click Advanced > Pins to access the blocks to read information from sensors and write values to servos. 

 

read from a digital sensor (values are 0 and 1) 

 

read from an analog sensor (usually 0 – 1024) 

 

 

         
write values to a servo 

 

2.  We use variables to store a sensor value each time it is read.   

      Click Variables > Make a Variable and enter the name (e.g. value) 

 

 

 

 

 

 

 

 

VERY IMPORTANT RULE 
NEVER connect wires with the CPX connected to your computer 

 
ALWAYS DISCONNECT THE USB CABLE 

(pulling out the big connector to the computer) 
or TURN OFF THE BATTERY 

 

  



13 | P a g e  
 

F.  Connect a Potentiometer (Analog Sensor) 
 

• A potentiometer takes the rotation of the shaft and turns it into a value between 0 and 1024. 
• A potentiometer operates on 3.3V, one outside pin connects to 3.3V. 
• The other outside pin connects to GND 
• The middle pin is the output, so can connect to any pin from A2 – A7. This sensor is analog and produces values 

between 0 and 1024. 

 

       

 

 

 

 

 

 

 

Change the colour of neopixels (create a new variable called colour) 

 

 

 

  

 

Change the brightness of neopixels 
(create a new variable called bright) 

 

 

 

Play a tone (create a new variable called 
tone)  
 

 

A  



14 | P a g e  
 

G. Connect a Soil Moisture Sensor (Analog Sensor) 

 

 

 

 

 

 
Make an Alarm Sound if Soil Moisture Falls Below a Certain Value 

When there is no moisture the sensor reads about 1000.  When put in water the sensor reads about 400.  Therefore, 
when soil moisture falls the value above a certain point must be tested.  

A0  GND  VCC 



15 | P a g e  
 

H. Connect an Ultrasonic Sensor 
 

• A sensor needs 3.3V – the red wire goes to 3.3V. 
• The GND connects to GND 
• The Trig and Echo are the control signal and can connected to any pins from A3 – A7.  This sensor is analog 

(values 0 – 1024). 

 

 

 

 

 

 

 

 

 
The ultrasonic sensor requires a signal (A6) to trigger a sound wave and a signal when the echo is received back (A7). 

 

 

 

 

 

 

 

 

 

CPX Challenge 
 
Write code to display different colours depending on the sensor distance or create a light graph of the value. 



16 | P a g e  
 

I. Connect Servos       
 

• A servo needs 5V – the red wire connects to VOUT. 
• The other outside pin connects to GND 
• The orange pin is the control signal and can only connect to A1 or A2. A value 

between 0 and 180 must be sent to the servo. 

Servos 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

A continuous rotation servo acts like a motor.  A value of 90 stops the servo.  
Values between 0 and 85 rotate the shaft backwards, and between 95 and 180 
rotate the shaft forwards. 

 

 
 
 
 
 
 

 
 
Use a Potentiometer to Move a Servo 
 

 

Change the potentiometer with the soil moisture sensor, and use it to control the servo.   
Try both types of servo.  

Micro Servo 
0-180 angle of servo 
 
Continuous Servo 
0-85 Backward 
90 Stop 
95-180 Forward 

Ground (brown wire) 
VOUT (red wire) 
Signal (orange wire) 



17 | P a g e  
 

J.  Connect Digital Sensors (e.g. Tracker, Collision Switch, Tilt Switch) 
 
A Tracker Sensor can tell the difference between dark and light colours by the reflection of light. 
 
• A Tracker Sensor operates on 3.3V, so VCC connects to 3.3V. 
• GND connects to GND 
• OUT is the output signal (connect to any pin from A3 – A7).  This is a digital sensor – the output values are 0 and 

1 (True and False). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



18 | P a g e  
 

K. Connect Motors 
 
Motors cannot be powered using the same power source as the CPX board and other sensors.  A motor driver board 
(e.g. OPEN-SMART Single MOS Switch) is required to supply battery power to the motor, and control the motor. 
 
 
 
 
 

 

 

 

 

 

 

 

Turn the motor on and off (full power) 

Any pin can be connected using digital 
write. 
 

 

 

 

 
 

Control Power to the Motor (using 
PWM– D0, D6, D9, D10 only) 

Only pins A1 and A2 can be connected 
using analog write.  

Analog write requires values between 0 
(off) and 1023 (full on) 

 

CPX Challenge 
Connect a Potentiometer or Soil 
Moisture Sensor to run the motor 
(set a threshold value to turn it on 
and off) 

Motor 

Battery + 
          - 

BE CAREFUL TO 
CONNECT RED TO VS 



19 | P a g e  
 

L. Obstacle Avoidance/Line Follower Servo Vehicle 
 

  



20 | P a g e  
 

M. Propeller Vehicle with Steering 
 

 


	A. Introduction and First Program
	What Has It Got?
	Plug It In
	Start Microsoft MakeCode

	https://makecode.adafruit.com/
	Your First Program
	Download and Save to the CPX
	Alter Your Program

	B. CPX Buttons and Accelerometer
	C. Loops and Variables
	CPX Challenges
	 Change the code to show every second or third neopixel
	 Write a program to play tones, starting at 50 (hz) and going up by 100 at a time, until 5000 (hz) is reached.  Then do the reverse.
	 Write a program to smoothly change the colour of all the neopixels.  Hint: The value of hue is 0 to 255.
	 Show all neopixels then brighten or dim them all (0-100)

	D. Sensors and Conditional Statements
	CPX Challenges
	 Map the light sensor value to neopixel brightness
	 Make neopixels brighter as the light sensor value decreases (try reversing the map low and high values)
	 Change the colour (hue) of neopixels depending on the light sensor value
	CPX Challenges
	 Use if-then statements to test whether button A or B is pressed (or was pressed) and take different actions.  Use this template.
	 Use if-then statements to test whether any of the touch pads is pressed (or was pressed) and take different actions.

	E. Connecting External Devices
	F.  Connect a Potentiometer (Analog Sensor)
	G. Connect a Soil Moisture Sensor (Analog Sensor)
	H. Connect an Ultrasonic Sensor
	CPX Challenge
	Write code to display different colours depending on the sensor distance or create a light graph of the value.

	I. Connect Servos
	Change the potentiometer with the soil moisture sensor, and use it to control the servo.
	Try both types of servo.

	J.  Connect Digital Sensors (e.g. Tracker, Collision Switch, Tilt Switch)
	K. Connect Motors
	CPX Challenge
	Connect a Potentiometer or Soil Moisture Sensor to run the motor (set a threshold value to turn it on and off)

	L. Obstacle Avoidance/Line Follower Servo Vehicle
	M. Propeller Vehicle with Steering

