
1 | P a g e

Digital Technology

PyGame Zero
Introduction

Create a Presentation

Version 3 Barry Butler
2021 bbutl58@eq.edu.au

2 | P a g e

Content

Section Content

A PyGame Drawing

B Fixing PyGame Coding Errors

C PyGame Variables and Movement

D PyGame Loops

E PyGame Conditionals

F PyGame Lists

G PyGame Mouse and Keyboard Events

H Create a PyGame Presentation

You must install Python and Mu before you can begin. Your teacher may have a USB drive
you can use or install them yourself:

1. Python from https://www.python.org/downloads/
2. Mu IDE from https://codewith.mu/en/download

https://www.python.org/downloads/
https://codewith.mu/en/download

3 | P a g e

A. PyGame Drawing

Using the Mu Editor

• Click on the mode button (top left) and change the mode to PyGame Zero.

• All code files must be saved in the mu_code folder.

• All images must be saved in the mu_code\images folder.

PyGame Zero Basic Code

All programs require some basic code to put a window on the screen, and draw in that window. For PyGame Zero it
is:

WIDTH = 800
HEIGHT = 600 #screen dimensions

def draw():
 pass #remove this when you write some code

• The screen height and width are constants – they do not change.
• The code def draw(): is a function – lines of code that perform a specific task. Notice how code is indented

within the function.

Comments

Note the comment – starting with #. Multi-line comments start and end with """.

PyGame Zero Window Coordinates

The top left corner of the window is the origin (0,0). The horizontal coordinate (x) is zero, and the vertical coordinate
is zero.

(0,0) (800,0)

(0,600) (800,600)

4 | P a g e

Clear the Window and Set the Window Color

In PyGame Zero, the draw() function is called 60 times every second to redraw the window.
Every time the window is redrawn we must clear everything off it and fill it with a color.

WIDTH = 800
HEIGHT = 600

def draw():
 screen.clear() #clear screen
 screen.fill('lightskyblue') #fill with a color

You can only have one draw() function in your program

Python has lots of standard colors. Try some out! Make sure you put the names in quotes, e.g. 'lime'.

You have already
written the code
in black.

New code to write
is shown in blue.

Don’t write the #
comments.

5 | P a g e

Draw Lines

Draw a line using the coordinates of the two ends. This code is placed in the draw() function.

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 screen.draw.line((0,0), (750,550), 'black')

The line drawing function has three parameters (bits of information it needs to draw the line), separated by
commas.

• Parameter 1: (0,0) - the (x,y) coordinates of the start point
• Parameter 2: (750,550) - the (x,y) coordinates of the end point
• Parameter 3: 'black' - the drawing color

Add more instructions to draw lines anywhere on the screen.

Draw Circles

Draw filled and unfilled circles using the center coordinates and the radius.

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 screen.draw.line((0,0), (750,550), 'black')

 screen.draw.circle((300,200), 100, 'yellow')
 screen.draw.filled_circle((600,450), 50, 'red')

The line drawing function has three parameters (bits of information it needs to draw the line), separated by
commas.

• Parameter 1: (300,200) - the (x,y) coordinates of the center
• Parameter 2: 100 – the circle radius
• Parameter 3: 'red' - the drawing color

Add more instructions to draw circles anywhere on the screen

6 | P a g e

Draw Rectangles
To draw filled and unfilled rectangles we first define the size of the rectangle, then call the function to draw the
rectangle.

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 screen.draw.line((0,0), (750,550), 'black')

 screen.draw.circle((300,200), 100, 'yellow')
 screen.draw.filled_circle((600,450), 50, 'red')

 screen.draw.rect(Rect((20,100),(360,400)), 'purple')
 screen.draw.filled_rect(Rect((0,400),(300,100)), 'darkblue')

A rectangle is defined by the coordinate of the top left (20,100) and a tuple containing the width and height
(360,400).

Add more instructions to draw rectangles anywhere on the screen

Draw Text

Look on your PyGame Zero Cheat Sheet and find the code for drawing text.

def draw():
 . . .

 screen.draw.text("Coding is Cool!", (350,30), color='black', fontsize=60)

Add more instructions to draw text anywhere on the screen.

Draw Images

To draw images, we create them as an Actor.

alien = Actor('alien', center = (400,200))

def draw():
 . . .

 alien.draw()

Look in the Images folder for more images and add more instructions to draw these anywhere on the screen.

Find images with transparent backgrounds using google (e.g. rock, spaceship) and copy them into the images folder.

The names of images must only be typed in lower case and placed in single or double quotes.

Our code is getting quite
long. To make things
shorter we will use

. . .
Keep what you’ve got
and add in the new code
in the position shown.

The order of your code is
important.

Make sure the new code
in blue looks exactly like
this.

7 | P a g e

B. Fixing PyGame Coding Errors

Almost all error messages will give you the line number on which it occurred. Sometimes you will need to look at
the previous line, because the error is at the end of the line (especially a missing colon [:] or closing bracket)

There are a number of basic coding errors that are commonly made in Python. You have probably made some of
these already when you were coding section A.

• Missing Code Errors. You must copy the examples in this book in exactly the way they have been written.
Don’t leave anything out. As you work more with Python you will begin to see the patterns.

• Spelling Errors. Python and PyGame Zero have built-in words that need to be spelt correctly or nothing will
work. Python is case-sensitive.

• Upper and lowercase Errors. Almost everything is written in lower case, but some things are in uppercase
and must be written in the correct case. Words may be joined by an underscore.

• Syntax Errors. Syntax is the grammar of the Python language – commas, brackets, semi-colons and
operators (=, ==, >, < etc) in the right places, where they are expected to be.

• Indentation Errors. The code after semi-colons is always indented. Always use the Tab key on your
keyboard to indent the code. Code should be aligned to the vertical lines in Mu.

Some code is always hard up against the left margin. Statements starting with import and def are some of
these.

• Assignment and Comparison Errors. Values are assigned to variables using the = operator. Two values are
compared using the == operator.

Once your code runs, you may also have two other errors:

• Runtime Errors. The code will stop because there is an error. These are mostly due to variable values
having values that are out-of-bounds.

• Logic Errors. Even if your code runs well, it may not do the things you want it to. These are logic or
sequencing errors. You are not giving the command statements in an order that makes things work the way
you want them to. For example, in the draw() function – writing text on the screen, then clearing the screen
and filling it with a colour. The text will never appear.

8 | P a g e

C. PyGame Variables and Movement

Variables enable us to store values (e.g. text and numbers).

The value of a variable can change.

They must have a descriptive name so you can recognise them.

The variable is always assigned with the equal sign, followed by the
value of the variable. Use descriptive names.

Types of Data

Variables are given a data type when they are assigned (e.g. i = 1). There are four basic data types:

• Integer e.g. 1, -120, 3000
• Floating point (Decimal) e.g. 1.45, -12.564, 4000.1
• String (Text) e.g. “First name”, ‘OK’
• Boolean True, False (with capital T and F)

Moving Lines

Instead of using a fixed value in a function we can use a variable. Then we can change the value of the variable to
create movement. First, start a new file.

WIDTH = 800
HEIGHT = 600

def draw():
 screen.clear()
 screen.fill('lightskyblue')

Then write the code to move a line across the screen. We declare the variable before the draw() function. The
update() function changes the value of the variable to create movement.

WIDTH = 800
HEIGHT = 600

start_x = 20

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 screen.draw.line((start_x,20), (400,550), 'black')

def update():
 global start_x
 start_x += 1 #add 1 to the value of line_x

Add other variables for the start and end coordinates of the line and change them too (note: -= subtracts a value).

Variable Naming Conventions

• Lowercase words separated
by underscores

• Begin with a letter of the
alphabet

Start a new file for
this section.

9 | P a g e

Global vs Local Variables

All variables are local to a function by default. That is, they only exist inside a specific function and cannot be used in
other functions.

The variable start_x is created outside a function, and can be used in all functions. It is called a global variable.

To change a global variable we must put a global statement in the first line of the function code.

Moving Circles

To move a circle let’s use three variables, for the x value, y value and the radius.

WIDTH = 800
HEIGHT = 600

start_x = 20
circle_x = 600
circle_y = 450
circle_radius = 50

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 screen.draw.line((start_x,20), (400,550), 'black')
 screen.draw.filled_circle((circle_x,circle_y), circle_radius, 'red')

def update():
 global start_x, circle_x, circle_y, circle_radius

 start_x += 1
 circle_x -= 1
 circle_y -= 1
 circle_radius += 1

Moving Images

Actors and their images are objects which have variables built into them (called properties). Images have x and y
properties that can be changed.

. . .
alien = Actor('alien', center = (10,10))

def draw():
 . . .
 alien.draw()

def update():
 . . .
 alien.x += 2
 alien.y += 1

Add more Actors with their images, and move them.

Notice how similar things
are put together

The global variables

The drawing code

The variable updating code

Make sure you put things
in their correct place

The global variable

The drawing code

The variable updating code

10 | P a g e

D. PyGame Loops

Start a new file.

WIDTH = 800
HEIGHT = 600

def draw():
 screen.clear()
 screen.fill('lightskyblue')

Loops provide an easy way of repeating a series of steps, without duplicating the code. For example, we can draw a
series of circles:

WIDTH = 800
HEIGHT = 600

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 radius = 10
 for i in range(10):
 screen.draw.circle((400,300), radius, 'red')
 radius += 10

The circle will be drawn 10 times. The variable i is the loop counter – it keeps track of how many times the loop has
executed.

The variable radius is increased every time the loop is executed. We must set the initial value of a variable before
the loop, then change the value with each iteration of the loop.

Draw a series of lines:

def draw():
 . . .

 x = 50
 for i in range(20):
 screen.draw.line((x,20), (x,200), 'black')
 x += 20

Start a new file for
this section.

Remember
. . .

means you keep what
you’ve got and add in
the new code in the
position shown.

11 | P a g e

For Loop with Three Parameters

The For Loop can actually take three parameters – the start value, the end value and the step value.

def draw():
 . . .

 for y in range(40,600,40):
 screen.draw.line((500,y), (750,y), 'yellow')

 for y in range(300,500,30):
 screen.draw.text('Hello There', topleft=(600,y), color='black', fontsize=20)

Use loops to draw other things on your screen: regular shapes, rows of circles around the border etc.

12 | P a g e

E. Conditional Statements

Start a new file.

WIDTH = 800
HEIGHT = 600

def draw():
 screen.clear()
 screen.fill('lightskyblue')

Conditional statements are used to make decisions, creating different pathways depending on variable values. They
have three key words: if, elif and else.

If a conditional statement is true, a set of instructions is executed. If the statement is false, then the instructions are
not executed or the instructions in the else statement are executed

Example 1 – two choices (if-else)

WIDTH = 800
HEIGHT = 600

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 for i in range(20):
 if i < 10: #conditional statement (is i < 10?)
 col = 'red' #color if statement is True
 else:
 col = 'yellow' #color if statement is False

 screen.draw.filled_circle((300,300+i*3), 70, col)

Example 2 – three choices (if-elif-else)

def draw():
 . . .

 x = 50
 for i in range(20):
 if i % 3 == 0: col = 'black'
 elif i % 2 == 1: col = 'red'
 else: col = 'yellow'
 screen.draw.line((x,20), (x,200), col)
 x += 20

• To compare values we use == (or <, >, <=, >=). != means not equal to (or use the keyword not)
• To assign a value to a variable we use =.

Start a new file for
this section.

The % operator is the
modulus operator.

The modulus is the
remainder of the
division. In this
example we can tell if a
number is even or odd.

13 | P a g e

Example 3 – Write text depending on the score

WIDTH = 800
HEIGHT = 600

score = 0

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 if score >= 100:
 s = 'You Win!'
 c = 'black'
 else:
 s = 'You Will Win Soon!'
 c = 'red'
 screen.draw.text(s, midtop=(600,10), color=c, fontsize=40)

def update():
 global score
 score += 1

Use Conditional Statements with Actors

Start a new file.

WIDTH = 800
HEIGHT = 600

def draw():
 screen.clear()
 screen.fill('lightskyblue')

Now we create and draw an alien and give it a variable called visible.

WIDTH = 800
HEIGHT = 600

alien = Actor('alien', center = (100,100))
alien.visible = True

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 if alien.visible:
 alien.draw()

Change the statement to alien.visible = False. What happens?

Make sure you put things
in their correct place

The global variable

The comparison and
drawing code

The variable updating code

Start a new file for
this section.

14 | P a g e

Use Conditional Statements to Limit Movement

We often want to limit the movement of an Actor to a portion of the screen (or make sure it does not go outside the
screen).

Let’s make an alien move on the screen.

WIDTH = 800
HEIGHT = 600

alien = Actor('alien', center = (100,100))
alien.visible = True
alien.x_speed = 2 #pixels to move each time
alien.y_speed = 3

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 if alien.visible:
 alien.draw()

def update():
 alien.x += alien.x_speed #change x and y position
 alien.y += alien.y_speed

Now let’s fix the problem of going off the screen. We use a double conditional statement to check whether the
Actors’ x or y coordinates are outside the screen.

def update():
 alien.x += alien.x_speed
 alien.y += alien.y_speed

 if (alien.x <= 0) or (alien.x >= WIDTH): #if x off screen
 alien.x_speed = -alien.x_speed #reverse direction

 if (alien.y <= 0) or (alien.y >= HEIGHT): #if y off screen
 alien.y_speed = -alien.y_speed

or means either of the statements must be True

and means both statements must be True

15 | P a g e

Test for Collisions

A fundamental event in games is collisions between sprites. We will use a rock image for the second sprite. If you
do not have a rock image in your Images folder, download one from the internet or change it for another you do
have.

WIDTH = 800
HEIGHT = 600

alien = Actor('alien', center = (100,100))
alien.visible = True
alien.x_speed = 3
alien.y_speed = 2

rock = Actor('rock', center = (400,300)) # 'rock' is the name of an image file

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 if alien.visible:
 alien.draw()
 rock.draw()

def update():
 alien.x += alien.x_speed
 alien.y += alien.y_speed

 if alien.colliderect(rock): #if collide with the rock
 alien.visible = False

 if (alien.x <= 0) or (alien.x >= WIDTH):
 alien.x_speed = -alien.x_speed

 if (alien.y <= 0) or (alien.y >= HEIGHT):
 alien.y_speed = -alien.y_speed

16 | P a g e

F. PyGame Lists

Start a new file.

WIDTH = 800
HEIGHT = 600

def draw():
 screen.clear()
 screen.fill('lightskyblue')

Lists make it easy to store and access a sequence of data. Lists are a comma-separated sequence surrounded by
square brackets, and assigned to a variable. The variable then has the data type list. The data in a list can be any
type, including mixed types.

To create a list, declare it (use a plural name):

numbers = [1, 2, 3, 4, 5]

measurements = [1.2, 3.7, 4.5, 8.7, 10.6]

answers = [False, True, True, False]

my_records = ['Bob', 24, 'Havana Rd', 4567, True, False]

Access List Values

List values are accessed by indexing the list variable. The first item of the list has an index of [0].

WIDTH = 800
HEIGHT = 600

names = ['Bob', 'Barney', 'Baz', 'Ben', 'Barb', 'Bridget']

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 s = 'First is ' + names[0]
 screen.draw.text(s, topleft=(100,50), color='red', fontsize=60)

 s = 'Third is ' + names[2]
 screen.draw.text(s, topleft=(100,150), color='red', fontsize=60)

 s = 'Last is ' + names[-1]
 screen.draw.text(s, topleft=(100,250), color='red', fontsize=60)

Start a new file for
this section.

17 | P a g e

Loop Through All List Values (Method 1)

The for loop can be used to access all items in a list. Replace the draw() code with this:

WIDTH = 800
HEIGHT = 600

names = ['Bob', 'Barney', 'Baz', 'Ben', 'Barb', 'Bridget']

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 y = 50
 for name in names:
 screen.draw.text(name, topleft=(600,y), color='yellow', fontsize=40)
 y += 50

It is common to use a plural description for a list (e.g. names)

The loop variable is the singular of the same description (e.g. name)

Loop Through All List Values (Method 2)

The for loop can also be used to access items by index.

WIDTH = 800
HEIGHT = 600

names = ['Bob', 'Barney', 'Baz', 'Ben', 'Barb', 'Bridget']

def draw():
 screen.clear()
 screen.fill('lightskyblue')

 y = 50
 for name in names:
 screen.draw.text(name, topleft=(600,y), color='yellow', fontsize=40)
 y += 50

 x = 40
 for i in range(len(names)):
 screen.draw.text(names[i], topleft=(x,500), color='red', fontsize=30)
 x += 100

The len() function returns the length of the list (number of items). Each list item is accessed using the loop variable i
(e.g. dogs[i])

18 | P a g e

G. PyGame Mouse and Keyboard Events

Start a new file.

WIDTH = 800
HEIGHT = 600

def draw():
 screen.clear()
 screen.fill('lightskyblue')

Respond to Mouse Clicks and Continuous Keyboard Presses (start new file)

Responding to mouse clicks is easy in PyGame Zero. Let’s click on an alien.

WIDTH = 800
HEIGHT = 600

alien = Actor('alien', center = (400,300))

def draw():
 screen.clear()
 screen.fill('lightblue')

 alien.draw()

def on_mouse_down (pos, button): #respond to mouse clicks
 if button == mouse.LEFT:
 if alien.collidepoint(pos): #if the mouse pos collides with the image
 if alien.image == 'alien':
 alien.image = 'alien_hurt'
 alien.angle = 180
 else:
 alien.image = 'alien'
 alien.angle = 0

def update(): #respond to continuous keyboard presses
 if keyboard.right:
 alien.x += 1
 alien.angle = 270
 elif keyboard.left:
 alien.x -= 1
 alien.angle = 90

If we only wanted to respond to separate key presses (rather than holding down a key) we use the on_key_down()
function.

def on_key_down(key):
 global choice
 if key == keys.UP:
 alien.y -= 5
 elif key == keys.DOWN:
 alien.y += 5

Start a new file for
this section.

19 | P a g e

H. Create a PyGame Presentation

PyGame Zero can be used to create interactive presentations. Screen elements may include:

• Rectangles of different colour, with text or images inside them
• Images
• Text – of different sizes and/or fonts
• Sprites – little images that can be clicked on and then do something.
• Buttons – made of a rectangle and a sprite
• Responses to keyboard keys
• Responses to mouse clicks (e.g. inside a button or on a sprite or image)

H1. PyGame Zero Basic Code

The following code is used for all PyGame Zero applications. Type this code into the Mu editor (in PyGame Zero
mode).

WIDTH = 800 #set screen dimensions
HEIGHT = 600

def draw():
 screen.clear() #clear screen and fill with colour
 screen.fill('deepskyblue')

def on_key_down(key):
 pass #required because there is no code here yet

def on_mouse_down(pos, button):
 pass

Notes:

1. The width and height sets up a window with those dimensions
2. There are three standard functions that the program automatically calls:

a. draw() – draws objects on the screen
b. update() – gets arrow key inputs and changes the position of objects before they are drawn
c. on_key_down() – makes things happen as a result of pressing keyboard keys

EACH TIME YOU ENTER CODE, CLICK THE “PLAY” BUTTON TO TEST IT, AND FIX ANY ERRORS.

20 | P a g e

H2. Create a Rectangle to hold Text

Almost all programs use rectangles of different colors to divide the screen into several parts. It is easiest to work
with rectangles if they are declared as constants at the beginning of the program. They can easily be changed later.

WIDTH = 800
HEIGHT = 600

TEXTRECT = Rect((20,100),(360,400)) #(x,y),(width,height)

def draw():
 screen.clear()
 screen.fill((0, 250, 250))

 screen.draw.filled_rect(TEXTRECT, 'lightskyblue')

H3. Create and Draw Images

Images are created as actors. You can have as many images as you like.

sheep1 = Actor("sheep1", topleft = (350,120))

def draw():
 screen.clear()
 screen.fill((0, 250, 250))

 sheep1.draw()
 screen.draw.filled_rect(TEXTRECT, 'lightskyblue')

H4. Write a Title

Titles are usually centred in the window, a little experimentation is required to get the coordinates correct.

def draw():
 screen.clear()
 screen.fill((0, 100, 250))

 screen.draw.text("Sheep are Cool!", (260,30), color='yellow', fontsize=60)
 sheep1.draw()
 screen.draw.filled_rect(TEXTRECT, 'lightskyblue')

21 | P a g e

H5. Write Some Text in the Rectangle

The easiest way to write text is to create a list with each item a different line of text. Each line of text is separated by
a comma.

In the draw() function, loop through the list to draw each line of text on the screen. Use the position of the rectangle
to position the text.

page1_text = ['This is how it all started…',
 'Someone caught a wild sheep',
 'and put it into pen.',
 'They fed it grass and oats.',
 'When it was big and fat they',
 'killed it and ate it'
]

def draw():
 . . .
 screen.draw.filled_rect(TEXTRECT, 'lightskyblue')

 y = 120
 for line in page1_text:
 screen.draw.text(line, (40,y), color='black', fontsize=30)
 y += 35

Notice that the first line of text starts at position y = 120. Each iteration of the loop adds 35 to y. So each line of text
is spaced 35 pixels apart. Change these values to alter where the text is on the screen and the spacing between the
lines.

22 | P a g e

H6. Create Multiple Pages

Create constants for each page, and a variable to hold the value of the current page. In the draw() function, use ‘if-
elif’ statements to separate the elements that are drawn on each page. Locate elements common to all pages
before or after the ‘if-elif’ statements.

Note: to shift many lines of code to the right, select all the lines and press Tab. To move them to the left, select all
the lines and press Shift-Tab.

PAGE1 = 0 #page constants
PAGE2 = 1
PAGE3 = 2
PAGE4 = 3
page = PAGE1 #page variable – holds the value of the current page

def draw():
 screen.clear()
 screen.fill((0, 100, 250))
 screen.draw.text("Sheep are Cool!", (260,30), color='yellow', fontsize=60)
 screen.draw.filled_rect(TEXTRECT, 'lightskyblue')

 if page == PAGE1:
 sheep1.draw()

 y = 120
 for line in page1_text:
 screen.draw.text(line, (40,y), color='black', fontsize=30)
 y += 35
 elif page == PAGE2:
 pass
 elif page == PAGE3:
 pass
 elif page == PAGE4:
 pass
 screen.draw.text(str(page), (WIDTH/2,HEIGHT-50), color='black', fontsize=30)

The last line draws the page number on the screen. Draw all the elements required for each page inside the elif
statement for that page.

23 | P a g e

H7. Draw Navigation Sprites

Add the arrows (or any other sprite) as an Actor. Using the WIDTH and HEIGHT constants to position these is a great
idea because they will stay in the correct places regardless of the window size.

sheep1 = Actor("sheep1", topleft = (350,120))
left_arrow = Actor("leftarrow", topleft = (30,HEIGHT-70))
right_arrow = Actor("rightarrow", topleft = (WIDTH-90,HEIGHT-70))

Draw the arrows on the window:

def draw():
 . . .
 screen.draw.text(str(page), (WIDTH/2,HEIGHT-50), color='black', fontsize=30)
 left_arrow.draw()
 right_arrow.draw()

H8. Use Arrow Keys to Move between Pages

We use the on_key_down() function to capture when keyboard keys are pressed, and navigate between pages.

def on_key_down(key):
 global page #required to change a global variable
 if key == keys.RIGHT:
 if page < PAGE4:
 page += 1
 elif key == keys.LEFT:
 if page > PAGE1:
 page -= 1

H9. Mouse Click on the Sprites to Move between Pages

To respond to mouse clicks, we test whether the mouse x and y coordinates are within the sprite rectangle. We put
the code in the on_mouse_down() function.

def on_mouse_down(pos, button):
 global page
 if button == mouse.LEFT:
 if left_arrow.collidepoint(pos):
 if page > PAGE1:
 page -= 1
 elif right_arrow.collidepoint(pos):
 if page < PAGE4:
 page += 1

	A. PyGame Drawing
	Using the Mu Editor
	 All code files must be saved in the mu_code folder.
	 All images must be saved in the mu_code\images folder.
	Clear the Window and Set the Window Color

	You can only have one draw() function in your program
	Draw Lines
	Draw Circles
	Draw Text
	Draw Images

	B. Fixing PyGame Coding Errors
	C. PyGame Variables and Movement
	Types of Data
	Moving Lines
	Global vs Local Variables
	Moving Circles

	D. PyGame Loops
	For Loop with Three Parameters

	E. Conditional Statements
	Use Conditional Statements to Limit Movement
	or means either of the statements must be True
	and means both statements must be True
	Test for Collisions

	F. PyGame Lists
	Access List Values
	Loop Through All List Values (Method 1)
	Loop Through All List Values (Method 2)

	G. PyGame Mouse and Keyboard Events
	Respond to Mouse Clicks and Continuous Keyboard Presses (start new file)

	H. Create a PyGame Presentation
	H1. PyGame Zero Basic Code
	H2. Create a Rectangle to hold Text
	H3. Create and Draw Images
	H4. Write a Title
	H5. Write Some Text in the Rectangle
	H6. Create Multiple Pages
	H7. Draw Navigation Sprites
	H8. Use Arrow Keys to Move between Pages
	H9. Mouse Click on the Sprites to Move between Pages

