Collision Avoidance Vehicle Barry Butler

CPX with Servos/Ultrasonic Sensor bbutl58@eq.edu.au

A. CPX Connections

Connect the servo’s and ultrasonic sensor to the CPX as shown.

(ceeye)

I2C Display:V G C D

CPX Connection Boa YK |
)

12c Jisi|a’~': VGDC

B. CircuitPython Basic Code

The following code is used for all CircuitPython CPX Code. Type this code into the Mu editor (in CircuitPython mode).

H#IMPORT S-—- - = —— o m oo oo
from adafruit_circuitplayground.express import cpx
import time

#CONNECTIONS--------- == oo
#GLOBAL VARIABLES---------—-mmm e
#FUNCTIONS - - - == - m oo oo m e
#PRESS BUTTON TO START----------—--mmmmmm oo
MAIN LOOP------—- oo oo oo
print('Main loop')

while True:

time.sleep(@.1)

EACH TIME YOU ENTER A SECTION OF CODE, CLICK THE “SAVE” BUTTON TO TEST IT, AND FIX ANY ERRORS.

e Select the CURCUITPY Folder
e Always Save Using the Filename - code.py

»
R
b

ROBOCOAST

Sunshine Coast Robotics

| ,
Coolum
State Fiigh Schoo www.robocoast.tech

C. Import the Required Libraries

We want the vehicle to run two servos and the ultrasonic sensor, so we import all the libraries required.

#IMPORTS---------—- -

from adafruit_circuitplayground.express import cpx
import time

import simpleio

import board

import pulseio

from adafruit_motor import servo

import adafruit_hcsro4

D. Set the CPX Board Connections

We must set up the connections of the servos and ultrasonic sensor to the correct pins on the CPX.

#CONNECTIONS---------—— oo e

pwmL = pulseio.PWMOut(board.D6, duty_cycle=0,frequency=50)
servolL = servo.Servo(pwmL)

pwmR = pulseio.PWMOut(board.D9, duty_cycle=0,frequency=50)
servoR = servo.Servo(pwmR)

sonar = adafruit_hcsr@4.HCSRO4(trigger_pin=board.D@, echo_pin=board.D1)

E. Global Variables

Next, we create two global variables — one to store whether the vehicle is on or off (by pressing buttons A and B),
and the other to store the ultrasonic sensor distance. We also set the brightness of the cpx neopixels.

#GLOBAL VARIABLES-----—-----"-"---- e~
vehicle_on = False

distance = 999

cpx.pixels.brightness = 0.2

F. Read and Test the Buttons and Ultrasonic Sensor

Before we turn on the servos and move the vehicle, let’s write the code to read the ultrasonic sensor and print the
result. We will also write the code to read the button presses and turn the vehicle on and off.

#FUNCTIONS----------"-"""~~~
def read_sonar(): #read the ultrasonic sensor
try:
d = sonar.distance
except RuntimeError:
d = 999
return d

def read_all_sensors(show_all):
global distance, vehicle_on

if cpx.button_a: vehicle_on = True #read on/off buttons
elif cpx.button_b: vehicle_on = False

distance = read_sonar() #istore the sonar distance
if show_all: print(distance)

Then, test the code we have written in the main loop.

#MAIN LOOP----------"-"—""—~~~~
print('Main loop')
while True:

read_all_sensors(True)

if vehicle_on: #button A is pressed - turn on servos
cpx.pixels.fil1((0,20,0))

else: #button B is pressed - turn off servos
cpx.pixels.fil1((20,0,0))

time.sleep(@.1)

Press the Serial button in Mu to check for any errors. The line number of the error will be shown. Be aware that the
error may be at the end of the previous line (e.g. missing closing bracket).

If the code is correct, the ultrasonic sensor distance will be displayed in the serial output. The CPX neopixels should
turn red and pressing button A will turn them green (vehicle on). Pressing button B will turn them back to red
(vehicle off).

G. Wait for a Button Press to Start

We don’t want the servo’s to start running as soon as we download the code the CPX. Sometimes, we might want a
delay after pressing the button. So, write the code to check if CPX button A has been pressed.

#PRESS BUTTON TO START-------------——-—--—-
print('Press button A to start')
cpx.pixels.fill1((0,0,20))
while not cpx.button_a:

time.sleep(@.1)
vehicle_on = True

H. Make the Vehicle Move using Servos

The vehicle has two servos. We need to:
1. Write a function called drive() to run both servos at the same time
2. Call the drive() function in the main loop

Write a function to run both servos at the same time

You already have code in the functions section. Put the new code beneath the existing functions.

#FUNCTIONS-------—————— e~

def drive(lspeed, rspeed): #values between @ (off) and 90 (full on)
if lspeed == 0: pwmL.duty_cycle = 0
else:

pwmL .duty_cycle = 2 ** 15
servolL.angle = 90 + lspeed
if rspeed == 0: pwmR.duty_cycle = 0
else:
pwmR.duty_cycle = 2 ** 15
servoR.angle = 90 - rspeed

Call the servo drive() function in the main loop

#MAIN LOOP-------———— oo e
print('Main loop')
while True:
read_all_sensors(True)
if vehicle_on:
cpx.pixels.fill1((0,20,0))

drive(20,20) #drive forward
else:

cpx.pixels.fil1((20,0,0))

drive(0,0) #stop the vehicle

time.sleep(@.1)

l. Use the Ultrasonic Sensor Distance to Avoid Collisions

Now we must use the sensor distance to stop the vehicle hitting objects, and move in a different direction.

#MAIN LOOP-------———— oo e
print('Main loop')
while True:
read_all_sensors(True)
if vehicle_on:
cpx.pixels.fill1((0,20,0))

if distance <= 10: #check if sonar distance <= 10cm:
drive(0,0) #stop servos
drive(0,20) #turn for 0.7 seconds
time.sleep(0.7)
drive(20,20) #drive forward

elif distance < 999: #if sonar distance > 10 cm:
drive(20,20) #drive forward

else:
cpx.pixels.fil1((20,0,0))
drive(0,0)

time.sleep(@.1)

Try:

1. Drive in a square or figure of 8

2. Locate an object and drive to it

3. Light signals when turning left or right using individual pixels e.g. cpx.pixels[0] = (0,0,100)
4. Slow down when getting closer to an object

	A. CPX Connections
	B. CircuitPython Basic Code
	C. Import the Required Libraries
	D. Set the CPX Board Connections
	E. Global Variables
	F. Read and Test the Buttons and Ultrasonic Sensor
	G. Wait for a Button Press to Start
	H. Make the Vehicle Move using Servos
	I. Use the Ultrasonic Sensor Distance to Avoid Collisions

