
1 | P a g e

Digital Technology

MakeBlock mBot2 / CyberPi
Python Coding

Version 4 Barry Butler
March 2023 bbutl58@eq.edu.au

2 | P a g e

Content

Section Content
A The mBot2 Vehicle
B Introduction and Setup
C Our First Program – Hello
D Turn on the Lights
E Information Display
F Ringtones and Sound Bites
G Run the Motors
H Avoid or Seek
I Detect and Follow a Simple Line
J Grabbers and Other Mechanics
K SumoBot Competition
L Line Follower with Intersections
M Mecanum Wheels
N Robotic Arm with 4 DOF
O Keep the Light Just Right
P Rollover Warning
Q Connect Other Sensors

Appendix 1 CyberPi Extras
Appendix 2 RoboRave a-Maze-ing Track Details

Documentation

https://www.yuque.com/makeblock-help-center-en/mcode/mblock-python

CyberPi Python https://www.yuque.com/makeblock-help-center-en/mcode/cyberpi-api
 (including Pocket Shield, mBot2 Shield and mBuild Modules)

Firmware Update

To update the CyberPi firmware:

1. Open the online ide at https://ide.mblock.cc/#/
2. Click on Devices and add the CyberPi device to the list, if it is not there already
3. Click Connect and connect the CyberPi (download and install the device driver, if asked)
4. Click on Settings and select Firmware Update

https://www.yuque.com/makeblock-help-center-en/mcode/mblock-python
https://www.yuque.com/makeblock-help-center-en/mcode/cyberpi-api
https://ide.mblock.cc/#/

3 | P a g e

A. The mBot2 Vehicle

Documentation

MBot2 Introduction
https://education.makeblock.com/help/cyberpi-series/cyberpi-series-cyberpi-
series-packages-and-extensions/mbot2-introduction/

Operational Guide
https://education.makeblock.com/help/mbot2-start/

Python Reference
https://education.makeblock.com/help/mblock-python-editor-python-api-
documentation-for-cyberpi/

https://education.makeblock.com/help/mblock-python-editor-apis-for-
extension-boards

https://education.makeblock.com/help/mblock-python-editor-apis-for-mbuild-
modules/

The Build The Connections

(Ultrasonic into the mBuild port, motors to EM1/EM2)

The Power Switch must be turned on
before the you can upload code

https://education.makeblock.com/help/cyberpi-series/cyberpi-series-cyberpi-series-packages-and-extensions/mbot2-introduction/
https://education.makeblock.com/help/cyberpi-series/cyberpi-series-cyberpi-series-packages-and-extensions/mbot2-introduction/
https://education.makeblock.com/help/mbot2-start/
https://education.makeblock.com/help/mblock-python-editor-python-api-documentation-for-cyberpi/
https://education.makeblock.com/help/mblock-python-editor-python-api-documentation-for-cyberpi/
https://education.makeblock.com/help/mblock-python-editor-apis-for-extension-boards
https://education.makeblock.com/help/mblock-python-editor-apis-for-extension-boards
https://education.makeblock.com/help/mblock-python-editor-apis-for-mbuild-modules/
https://education.makeblock.com/help/mblock-python-editor-apis-for-mbuild-modules/

4 | P a g e

B. Introduction and Setup

Download and Install the Software

Download and install the mBlock Windows or Mac software from https://mblock.makeblock.com/en-us/download/

(The PC software seems to be more stable than the web version located at https://python.mblock.cc/)

1. Run the software and select the Python Editor.

The Python Editor program will open. The block editor will stay open, but you can close it at any time.

 Mode switch File menu Rename project Coding space

 Connection button Upload code to mBot2

To have the Python Editor open by default, click … and choose Set as default editor

https://mblock.makeblock.com/en-us/download/
https://python.mblock.cc/

5 | P a g e

2. TURN ON THE MBOT2 USING THE SWITCH ON THE SIDE

The lights on both the ultrasonic sensor and the line follower sensor should turn on. If they are don’t, the wiring
is incorrect or unplugged, and needs to be fixed.

3. Select Upload mode. If a message appears, tick “Don’t remind me” and then click Sure to switch.

4. Plug the mBot2 into a USB port and click the Connect button .

Select your USB port from the list and click Connect.

5. Click on the File menu and select New Project.

6. Start coding

Find Your Port

You can easily find your device by first
leaving your mBot unplugged. Click
Connect and look at the list of USB ports.

Close the connect window, then plug in
your mBot2. Click Connect again and
look for the port that has just been
added.

6 | P a g e

C. Our First Program – Hello

Our first program will write ‘hello’ on the console, say it on the audio speaker and turn all LED’s to green for 2 seconds.

import cyberpi as cpi
import time

cpi.console.print("hello")
cpi.audio.play('hello')
cpi.led.on(0,255,0) #red, green, blue values from 0 to 255
time.sleep(2) #time delay in seconds
cpi.led.off()
cpi.console.clear()

Click the Upload button to send your code to the mBot2.

The code will start executing immediately it is uploaded.

Unsuccessful Upload

If the upload is unsuccessful check three things:

1. The mBot2 is turned on (the power switch on the left side).

2. The cable is plugged in and a connection established (see section B4).

Save the Project and Upload to the CyberPi

Save the project to your computer by clicking on the File menu and choosing Export project.

It is a good idea to create a folder to contain all your projects.

Make sure you type in a descriptive name for your file.

7 | P a g e

Coding Errors and Feedback from the CyberPi

When you write code, errors show up with an explanation mark symbol.

In the example shown here there are a couple of errors:

• the statement in line 1 is import cyberpi as cpu rather than
import cyberpi as cpi causing errors in all the other lines.

• line 4 is missing cpi.

If you were to upload this code it would not run and the upload window will show you the first error. Scroll to the
bottom of the text to see the error message.

Program Feedback

You can also give yourself feedback in the code you write by using the print() function. This is different to the
cpi.console.print() function. Try this:

import cyberpi as cpi
import time

cpi.console.print("hello")
print('talk to me')
cpi.audio.play('hello')
print('turn leds to green for 2 seconds')
cpi.led.on(0,255,0)
time.sleep(2)
cpi.led.off()
cpi.console.clear()

Comments and turning on/off code statements

Put a # in front of any line to create comments or to turn code statements into comments so they are not executed.

8 | P a g e

D. Turn on the Lights

The mBot2 is controlled by a module called cyberpi. This has a joystick, a home button and
two push buttons (A and B). We can use the joystick and buttons in our code.

The home button is used to reset the program to run again from the start. After pressing
the home button, press down on the joystick to select the first option that appears.

Instead of the code running automatically when it is uploaded, let’s turn on the lights when we press button A. To do
this we need to put the code into a forever loop and use an if-else statement.

import cyberpi as cpi
import time

while True:
 if cpi.controller.is_press('a'):
 cpi.led.on(0,255,0)
 if cpi.controller.is_press('b'):
 cpi.led.off()
 time.sleep(0.1)

We can also turn on and off individual led’s using the cpi.led.on command or cpi.led.show.

import cyberpi as cpi
import time

while True:
 if cpi.controller.is_press('a'):
 cpi.led.on(0,255,0)
 time.sleep(0.3)
 cpi.led.on(0,0,255, id=3)
 if cpi.controller.is_press('b'):
 cpi.led.show('r o y g c')
 time.sleep(0.1)

The colour options for cpi.led.show are:
red r orange o yellow y green g cyan c
blue b purple p white w black k

Try different combinations of lights and make your own patterns. Use the time.sleep command to create delays
between lights.

9 | P a g e

Turn on Lights using the Joystick

Add the code below to use the joystick to change colours. We use an elif statement because only one option can occur
at one time. Before the forever loop we can set the led brightness.

import cyberpi as cpi
import time

cpi.led.set_bri(50)
while True:
 if cpi.controller.is_press('up'):
 cpi.led.on(0,255,0)
 elif cpi.controller.is_press('down'):
 cpi.led.on(255,0)
 elif cpi.controller.is_press('left'):
 cpi.led.on(0,0,255)
 elif cpi.controller.is_press('right'):
 cpi.led.on(0,255,255)
 time.sleep(0.1)

Continue exploring different light patterns for each joystick direction.

Shake It or Tilt It

We can use the motion sensor (accelerometer) to turn on the lights using a shake
or tilt.

import cyberpi as cpi
import time

cpi.led.set_bri(50)
while True:
 if cpi.is_shake():
 cpi.led.on(0,255,0)

 elif cpi.is_tiltforward():
 cpi.led.on(255,0,0)
 elif cpi.is_tiltback():
 cpi.led.on(255,255,0)

 elif cpi.is_tiltleft():
 cpi.led.on(0,0,255)
 elif cpi.is_tiltright():
 cpi.led.on(0,255,255)
 time.sleep(0.1)

10 | P a g e

Yell (or clap) at it

import cyberpi as cpi
import time

cpi.led.set_bri(50)
while True:
 level = cpi.get_loudness("maximum")
 if level > 50:
 cpi.led.on(0,255,0)
 else:
 cpi.led.on(0,0,0)
 time.sleep(0.1)

Sound level values range from 0 to 100. Change if level > 50 to a different value and see what happens.

Finding and Correcting Errors

By now you will have probably encountered quite a few
errors or bugs in your code. You will often see messages
saying that you have a syntax error or indentation error.

Make sure you keep the upload window open so you catch runtime errors – the
errors that only appear when you run the code.

Common Bugs
1. Spelling mistakes
2. Incorrect case – Upper and lowercase are different in Python
3. True and False have capital first letter
4. Missing colon (:) at the end of if, def and while statements
5. Incorrect indentation (use the tab key to indent statements)

11 | P a g e

E. Information Display

Having a built-in display is really useful for displaying instructions and information from sensors. Writing to a display is
relatively slow, so when we have tested the ultrasonic sensor or line tracker sensor we will probably turn off the display
so we can respond quickly to the new information.

Text

Let’s display text when pressing the two switches. The println() function writes each message on a new line.

import cyberpi as cpi
import time

while True:
 if cpi.controller.is_press('a'):
 cpi.console.println('button a')
 elif cpi.controller.is_press('b'):
 cpi.console.println('button b')
 time.sleep(0.1)

Numbers

We can only write text (called strings) to the display. To write numbers on the display we have to convert the number
to text. This code writes a sequence of numbers.

import cyberpi as cpi
import time

i = 0
while True:
 msg = str(i)
 cpi.console.println(msg)
 i += 1
 time.sleep(0.5)

Loopy Numbers

Loops are one of the fundamental coding structures. Let’s create a loop to display a sequence of ten numbers between
0 and 9.

import cyberpi as cpi
import time

while True:
 if cpi.controller.is_press('a'):
 for i in range(10):
 cpi.console.print(str(i) + ',')
 time.sleep(0.5)

Notice two things:

1. The print() function is used rather than println(). The numbers appear on the same line each time.
2. Two bits of text are joined using the + operator.

12 | P a g e

We can change the start and end values of the loop. For example, loop between 3 and 7. Note that the end number in
the code must be one greater than the number we want to finish on.

import cyberpi as cpi
import time

while True:
 if cpi.controller.is_press('a'):
 for i in range(3, 8, 1):
 cpi.console.print(str(i) + ',')
 elif cpi.controller.is_press('b'):
 cpi.console.clear()
 time.sleep(0.1)

This loop statement has three numbers – the start value, the end value, and the step value.

We are also using button B to clear the screen.

Change each of the three values and see what happens.

Writing to a Specific Display Position

We can write messages at particular positions on the screen by either using x,y coordinates
or a position string.

import cyberpi as cpi
import time

while True:
 if cpi.controller.is_press('a'):
 cpi.display.show_label('Msg at (10,10)', 12, 10, 10)
 elif cpi.controller.is_press('b'):
 cpi.display.show_label('Bottom left', 12, 'bottom_left')
 time.sleep(0.1)

The position strings are

• top_mid: in the upper center
• top_left: in the upper left
• top_right: in the upper right
• center: in the center
• mid_left: in the middle left
• mid_right: in the middle right
• bottom_mid: in the lower center
• bottom_left: in the lower left
• bottom_right: in the lower right

Unfortunately, the command clears the screen before displaying the message so we cannot have more than one
message on the screen. To show more information, use a combination of println() and clear() commands.

13 | P a g e

F. Ringtones and Sound Bites

Phone Ringtones

Ringtones are just a series of notes played for a certain
duration.

import cyberpi as cpi
import time

while True:
 if cpi.controller.is_press('a'):
 cpi.audio.play_music(60,0.5)
 cpi.audio.play_music(60,0.5)
 cpi.audio.play_music(67,0.5)
 cpi.audio.play_music(67,0.5)
 cpi.audio.play_music(69,0.5)
 cpi.audio.play_music(69,0.5)
 cpi.audio.play_music(67,0.5)
 time.sleep(0.1)

Create your own ringtone. Add more notes to the list of constants if you need to.
You can use the time.sleep() function to create spaces in your music.

Sound Bites

There are many built-in sound files – see https://education.makeblock.com/help/mblock-
python-editor-python-api-documentation-for-cyberpi/ audio for a full list.

import cyberpi as cpi
import time

while True:
 if cpi.controller.is_press('a'):
 cpi.audio.play('yeah')
 elif cpi.controller.is_press('b'):
 cpi.audio.play('bye')
 time.sleep(0.1)

https://education.makeblock.com/help/mblock-python-editor-python-api-documentation-for-cyberpi/
https://education.makeblock.com/help/mblock-python-editor-python-api-documentation-for-cyberpi/

14 | P a g e

G. Run the Motors

There are a number of ways we may want to move the mBot2. Forward motor speeds are between 0 and 100.
Backward motor speeds are between 0 and -100. Movement still occurs at speeds close to zero.

Movement Commands
Forward or backward
forever.

(Should only be used when the
ultrasonic sensor or colour
sensors are used to control
when the motors should stop)

 cpi.mbot2.forward(speed = 50)

cpi.mbot2.backward(speed = 50)
cpi.mbot2.forward(speed = -50)

cpi.mbot2.EM_stop(port = "all")

Forward or backward for
a length of time

cpi.mbot2.forward(speed = 50, run_time = 1)

cpi.mbot2.backward(speed = 50, run_time = 1)
cpi.mbot2.forward(speed = -50, run_time = 1)

Forward or backward for
a fixed distance

 cpi.mbot2.straight(40, speed = 50)

cpi.mbot2.straight(-40, speed = 50)

Turn on the spot for a
length of time
(wheels turning in different
directions)

 cpi.mbot2.turn_left(speed = 50, run_time = 1)

cpi.mbot2.turn_right(speed = 50, run_time = 1)

Turn for a number of
degrees of heading

 cpi.mbot2.turn(90, speed = 50)

Gradual turn for a length
of time
(wheels turning in the same
direction or one wheel
stopped)

 cpi.mbot2.drive_power(60, -40) #left +, right -
time.sleep(2)
cpi.mbot2.EM_stop(port = "all")

Stop motors cpi.mbot2.EM_stop(port = "all")

cm

seconds

forever

time

degrees

time

15 | P a g e

Code Templates

There are two basic code templates we use when running motors. In both cases, we use button A to turn on the mBot2
to start the actions.

Separating code into sections makes it much easier to understand the code and make changes to it. Later, we will add
more sections as we require them.

1. One Time Actions. Use this when the mBot2 actions should only occur once and then finish.

#IMPORTS---------------------------------------
import cyberpi as cpi
import time

#WAIT TO START---------------------------------
cpi.console.println('Press A')
while not cpi.controller.is_press('a'):
 cpi.led.on(255,0,0)
cpi.led.on(0,255,0)

#ROBOT ACTIONS---------------------------------
cpi.mbot2.forward(speed = 50, run_time = 2) #Example commands.
cpi.mbot2.backward(speed = 50, run_time = 2) #Replace with your own!

cpi.led.off()

If we have actions that are repeated, we can use a for loop. For example, to move in a square:

#IMPORTS---------------------------------------
import cyberpi as cpi
import time

#WAIT TO START---------------------------------
cpi.console.println('Press A')
while not cpi.controller.is_press('a'):
 cpi.led.on(255,0,0)
cpi.led.on(0,255,0)

#ROBOT ACTIONS---------------------------------
for i in range(4):
 cpi.mbot2.straight(40, speed = 50) #cm
 cpi.mbot2.turn(90, speed = 50) #degrees

cpi.led.off()

CHALLENGES

1. Place one or more large objects on the floor. Navigate the mBot2 through and/or around them.

2. One of the RoboRAVE competitions is AMAZE-ing. It consists of a series of boards that make up a maze. You do

not know the shape of the maze until the competition. The person who keeps the robot on the boards and has the
fastest time wins.

16 | P a g e

2. Forever Actions. This code has a while True loop that repeats the actions forever – or until you press the home
button next to the USB connection.

#IMPORTS---------------------------------------
import cyberpi as cpi
import time

#WAIT TO START---------------------------------
cpi.console.println('Press A')
while not cpi.controller.is_press('a'):
 cpi.led.on(255,0,0)
cpi.led.on(0,255,0)

#MAIN LOOP-------------------------------------
while True:
 cpi.mbot2.forward(speed = 50, run_time = 2) #Example commands.
 cpi.mbot2.backward(speed = 50, run_time = 2) #Replace with your own!

This code is mainly used in conjunction with the joystick and buttons, or the ultrasonic and line follower sensors, where
the mBot2 will respond to changes in sensor values.

CHALLENGES

3. Place two small objects on the floor at least 1m apart. Drive around these multiple times in a figure of 8. When

you turn use the led’s to indicate your turns.

4. Place a large object on the floor and turn around the object 3 times in a large, smooth circle. (Use the

cpi.mbot2.drive_power() function)

17 | P a g e

H. Avoid or Seek

The Ultrasonic Sensor is used to measure the distance between the mBot2
and anything in front of it (up to about 200cm). It can be used to avoid
obstacles or seek out an object and move toward it.

The minimum distance detected is 4cm. Smaller distances give a reading of
300.

Test your Ultrasonic Sensor with this code. Putting all the sensor reading code into a function unclutters the main loop.

#IMPORTS---------------------------------------
import cyberpi as cpi
import time

#GLOBAL VARIABLES------------------------------
distance = 300

#FUNCTIONS-------------------------------------
def get_all_values(output=True):
 global distance

 distance = cpi.ultrasonic2.get(index=1)

 if output:
 cpi.console.println(str(distance))
 time.sleep(0.1)

#WAIT TO START---------------------------------
cpi.console.println('Press A')
while not cpi.controller.is_press('a'):
 cpi.led.on(255,0,0)
cpi.led.on(0,255,0)

#MAIN LOOP-------------------------------------
while True:
 get_all_values(output=True)

18 | P a g e

Obstacle Avoidance

#MAIN LOOP--------------------------------------
while True:
 get_all_values(output=False)

 if distance < 10: #collision test
 cpi.mbot2.EM_stop(port = "all") #stop
 cpi.mbot2.straight(-5, speed = 50) #move back 5cm
 cpi.mbot2.turn(135, speed = 50) #turn 135 degrees
 else:
 cpi.mbot2.forward(speed = 50) #forward

Seek Objects and Move Toward Them

Rotate to detect an object closer than 80cm, then move toward the object.

#MAIN LOOP--------------------------------------
while True:
 get_all_values(output=False)

 if distance > 80:
 cpi.mbot2.turn_left(speed = 50) #rotate to locate

 else: #object detected
 cpi.mbot2.EM_stop(port = "all") #stop
 cpi.mbot2.forward(speed = 100) #forward full speed

CHALLENGES

5. Place 4 objects at the corners of a square. Find one of them and stop just before you hit it. Turn and find the next

object, until you have found all four.

6. Find your way autonomously through a simple maze (sides are 10cm high)

19 | P a g e

I. Detect and Follow a Simple Line

The Quad RGB Sensor (color sensor) enables us to detect and follow lines,
and detect colours and respond to the colours in different ways.

The order of the four RGB sensors are (from the left facing forward):

L2 L1 R1 R2

Detecting Lines

The first thing to do is successfully detect lines. Test the sensor using this
code, by passing the mBot2 over a black line on a white background with
get_all_values output set to True.

import cyberpi as cpi
import time

#GLOBAL VARIABLES------------------------------
distance = 300
line = 15
last_line = -1
over_line = 0

#FUNCTIONS-------------------------------------
def get_all_values(output=True, black_line=True):
 global distance, line, any_line

 distance = cpi.ultrasonic2.get(index=1)
 line = cpi.quad_rgb_sensor.get_line_sta(index = 1)

 if black_line: over_line = line < 15
 else: over_line = line > 0

 if output:
 cpi.console.println(str(line) + ' ' + str(distance))

#WAIT TO START---------------------------------
cpi.console.println('Press A')
while not cpi.controller.is_press('a'):
 cpi.led.on(255,0,0)
cpi.console.println('')
cpi.led.on(0,255,0)

#MAIN LOOP--------------------------------------
while True:
 get_all_values(output=True, black_line=True)
 if over_line:
 pass #your code here

Place the mBot2 inside a Sumo mat (white border on black background) or a white mat with a black border. Use code
similar to that used for obstacle avoidance if a line is detected.

The sensor may need calibration.
See instructions at the end of this
section.

20 | P a g e

Following a Simple Line (No Intersections)

When we follow a line, we need to use all the values that are sent from the Quad RGB sensor. Remember the sequence
of sensors (from the left facing forward):

L2 L1 R1 R2

• If both sensors L1 and R1 are on black – go straight ahead
• If only sensor L1 or L2 is on black – turn to the left
• If only sensor R1 or R2 is on black – turn to the right

The values correspond to which sensors are triggered over a line.

15 all off line 7 L2 on line 9 L1 and R1 on line
0 all on line 14 R2 on line

11 L1 on line 3 L1, L2 on line 1 L1, L2, R1 on line
13 R1 on line 12 R1, R2 on line 8 L1, R1, R2 on line

First, add the following global variables. These will set default values of power to the wheels that can easily be changed.

#GLOBAL VARIABLES------------------------------

hi_p = 25
lo_p = 5

21 | P a g e

Set up a function with a series of conditional statements in the main loop to deal with each situation – run the motors
to follow the line. Call the function in the main loop.

#FUNCIONS--

def drive_lines():
 global last_line

 if not last_line == line:
 last_line = line

 if line == 7: #L2
 cpi.mbot2.drive_power(lo_p, -hi_p) #turn left
 elif line == 11: #L1
 cpi.mbot2.drive_power(lo_p, -hi_p) #turn left

 elif line == 13: #R1
 cpi.mbot2.drive_power(hi_p, -lo_p) #turn right
 elif line == 14: #R2
 cpi.mbot2.drive_power(hi_p, -lo_p) #turn right

 elif line == 9: #L1 and R1
 cpi.mbot2.drive_power(hi_p, -hi_p) #straight ahead

#MAIN LOOP--------------------------------------
cpi.mbot2.drive_power(20, -20)

while True:
 get_all_values(output=False, black_line=True)
 drive_lines()

See if this works! What is reason for having a last_line variable?

Challenges

1. Oval or Circuit Race. Follow an oval line or a more complicated circuit from start to finish. Time the run. The

robot that does the quickest time wins.

2. Follow a line from beginning to end. How will you detect the end?

22 | P a g e

Calibrating the Quad Color Sensor

The Quad Color Sensor has a button that enables the sensor to distinguish between the background and the line.

Double-press: When the button is double-pressed, Quad RGB Sensor starts to learn the background and line for line

following.

1. Place the light sensors on the background of the line-following track map and double-press the
button.

2. When you see the LEDs indicating the line-following state blink quickly, sway the sensors from side
to side above the background and line until the LEDs stop blinking. It takes about 2.5 seconds. The
parameter values obtained are automatically stored.

3. If the learning fails, the LEDs blink slowly, and you need to start the learning again.

Long-press: When the button is long-pressed, Quad RGB Sensor switches the color of the fill lights. Generally, you

don’t need to change the color. The color is set automatically after the learning is complete.

23 | P a g e

J. Grabbers and Other Mechanics

There are a range of grabbers and other mechanical devices that can be attached to the mBot2. All the devices are
operated by servo’s or motors. The mBot2 can operate up to 4 servos and extra motors at a time.

MakeBlock mBot - Mini Gripper
(22-60mm)
Servo (approx. $30)

Makeblock mBot – Robot Gripper
(67mm)
N20 DC motor (approx. $50)

DFRobot Maqueen Mechanic –
Beetle
Servo (approx. $22)

DFRobot Maqueen Mechanic –
Loader
Servo (approx. $22)

DFRobot Maqueen Mechanic –
Forklift
Servo (approx. $32)

DFRobot Maqueen Mechanic – Push

Servo (approx. $22)

These are all easily mounted on the mBot2 by adding a wooden or metal bar in front of the ultrasonic sensor (which
may need raising slightly).

There are two types of servos:

• Micro servos have a range of 1800.
• Continuous rotation servos revolve in a full circle.

Micro Servo Angle Values
0-180 angle of servo

Continuous Servo Angle Values

0-85 Backward
90 Stop
95-180 Forward

24 | P a g e

Operating the Servos

Up to 4 servos can be plugged in the servo ports on the right-hand side (S3 and S4), or the general IO ports on the left
(S1 and S2). This code changes the angle of the servo connected to S1.

import cyberpi as cpi
import time

while True:
 cpi.mbot2.servo_set(90, 'S1')
 time.sleep(1)
 cpi.mbot2.servo_set(140, 'S1')
 time.sleep(2)
 cpi.mbot2.servo_set(40, 'S1')
 time.sleep(2)

Run DC motors

Additional motors can be run from the M1 and M2 ports.

import cyberpi as cpi
import time

while True:
 cpi.mbot2.motor_set(50, 'S1') #power is -100 to 100
 time.sleep(2)
 cpi.mbot2.motor_stop('S1')
 time.sleep(2)
 cpi.mbot2.motor_set(-50, 'S1')
 time.sleep(2)

Both motors can also be run with one command:

cpi.mbot2.motor_drive(power1, power2)

25 | P a g e

K. SumoBot Competition

SumoBots use the ultrasonic sensor to seek and destroy another robot vehicle in the Sumo ring, while using the color
sensor to sense the white border and avoid falling off the edge.

H1. Basic Sumo Code

The basic actions of a SumoBot are:

• A three second wait before doing anything
• Move forward from the edge 20cm
• Rotate until the ultrasonic sensor locates the other vehicle (less than 80cm away)
• Drive full speed toward the other vehicle
• If the white edge is detected (high reflectance value) then stop, back up and rotate to locate the other vehicle

#MAIN LOOP--------------------------------------
found = False
cpi.mbot2.straight(20, speed = 40)

while True:
 get_all_values(output=False, black_line=False)

 if any_line: #white line detected
 found = False
 cpi.led.on(0,255,0)
 cpi.mbot2.EM_stop(port = "all") #stop, back and rotate
 cpi.mbot2.straight(-10, speed = 40)
 cpi.mbot2.turn(90, speed = 40) #turn to start location

 if distance < 80 or found: #other robot detected
 found = True
 cpi.led.on(0,0,255)
 cpi.mbot2.forward(speed = 40) #forward full speed
 else:
 cpi.mbot2.turn_left(speed = 5) #rotate to locate

H2. Enhancements

• Don’t waste time moving forward at the start before starting to find the other vehicle
• Only scan left and right up to 90 degrees the first time
• Stop every 10 degrees when scanning to make sure scan detects vehicle (moving too fast doesn’t work)
• Use movement sensor to detect a collision or the bot lifted off the ground (pitch or roll) and respond to that

(see Appendix 1)
• If motion is stopped for x seconds, use a series of rapid wheel movements (e.g. back and forth) to try and get

free
• Use a different strategy:

 Follow white line around the outside (use L2 or R2)
 Drive to a random place
 Drive forward until white line and turn and randomly go somewhere else until white line

• Use more than one ultrasonic sensor at different angles

26 | P a g e

L. Line Follower with Intersections

Line following involving intersections, such as the RoboRave Line Follower competition,
is a lot more complex than simple lines or circuits explored in section K.

Ideally, we would use the two inner sensors (L1 and R1) to track a line, and combinations
using the two outer sensors (L2 and R2) to check for intersections.

However, the two outer sensors are often triggered if the lines are tightly curved. We
need to switch the sensors between simply following lines and detecting sections, then
use a timer to switch between sections of a track.

1. Add code for a simple timer.

#GLOBAL VARIABLES------------------------------

timer_start = 0
finished = False

#FUNCTIONS---------------------------------------

def start_timer():
 global timer_start, finished
 finished = False
 timer_start = time.time()

def elapsed_time():
 return time.time() - timer_start

2. Add the options to detect intersections to the check_lines() function. Note the option to check for intersections
or not.

def drive_lines(intersection_on = False):
 global last_line, finished
 if not last_line == line:
 last_line = line

 if intersection_on and line in [0,1,3,8,12,15]:
 if line == 15: #all off line
 pass
 elif line == 0 or line in [1,3] or line in [8,12]:
 #all - L1, L2, (R1) - (L1), R1, R2
 cpi.mbot2.EM_stop(port = 'all')
 finished = True

 elif line == 7: #L2
 cpi.mbot2.drive_power(lo_p, -hi_p) #turn left

27 | P a g e

3. Write a function to drive a section of line, with or without checking for intersections. Note that all the
commands from the main loop go into this section.

def drive_section(seconds = 99999, check_intersection = True):
 start_timer()
 while elapsed_time() < seconds and not finished:
 get_all_values(output=False, black_line=True)
 drive_lines(intersection_on = check_intersection)
 if show_led: led_lines()

4. Add drive_section() functions to the main loop in a sequence to cover the whole track. This sequence can later

be looped to continue forever.

#MAIN LOOP--------------------------------------
cpi.mbot2.drive_power(hi_p, -hi_p)

cpi.console.println('Running 1')
drive_section(seconds = 10, check_intersection = False) #section 1 no intersection

cpi.console.println('Running 2')
drive_section(seconds = 8, check_intersection = True) #section 2 stop at intersection

#your code to turn at the intersection and continue with more sections goes here

cpi.mbot2.drive_power(0, 0)

To follow the line faster, you might need the change:

• The power to the left and right wheels
• The difference in power between the left and right wheels
• How you interpret the percentage color sensor values
• Use the L2 and R2 sensors as well

CHALLENGES

6. RoboRAVE Line Follower Competition. Be the fastest robot to get from home to the box.

28 | P a g e

M. Mecanum Wheels

Mecanum wheels provide multi-directional movement. All the
mBot2 components (except for motors) can be installed on the back
of the chassis shown here, leaving room for mechanical arms, ping-
pong ball launchers etc.

These wheels can be driven using the EM motor outputs
combined with motor outputs M1 and M2.

Write a function to run all four motors at the same time.

def run_motors(dir='straight',speed1=40,speed2=0,t=0):
 if dir == 'straight':
 cpi.mbot2.motor_drive(speed1,speed1) #front
 cpi.mbot2.drive_power(speed1,-speed1) #back em

 elif dir == 'right':
 cpi.mbot2.motor_drive(speed1,-speed2)
 cpi.mbot2.drive_power(-speed2,-speed1)
 elif dir == 'left':
 cpi.mbot2.motor_drive(-speed2,speed1)
 cpi.mbot2.drive_power(speed1,speed2)

 elif dir == 'turnright':
 cpi.mbot2.motor_drive(speed1,speed2)
 cpi.mbot2.drive_power(speed1,-speed2)
 elif dir == 'turnleft':
 cpi.mbot2.motor_drive(speed2,speed1)
 cpi.mbot2.drive_power(speed2,-speed1)

 elif dir == 'diagright':
 cpi.mbot2.motor_drive(speed1,speed2)
 cpi.mbot2.drive_power(speed2,-speed1)
 elif dir == 'diagleft':
 cpi.mbot2.motor_drive(speed2,speed1)
 cpi.mbot2.drive_power(speed1,-speed2)

 if t > 0:
 time.sleep(t)
 cpi.mbot2.motor_stop("M1")
 cpi.mbot2.motor_stop("M2")
 cpi.mbot2.EM_stop(port = "all")

29 | P a g e

Test the motors in various combinations for short periods of time.

while True:

 run_motors(dir='straight',speed1=40,speed2=40,t=3)
 run_motors(dir='diagright',speed1=80,speed2=0,t=3)
 run_motors(dir='turnleft',speed1=40,speed2=0,t=3)
 run_motors(dir='right',speed1=40,speed2=40,t=3)

 run_motors(dir='straight',speed1=-40,speed2=-40,t=3)
 run_motors(dir='diagleft',speed1=80,speed2=0,t=3)
 run_motors(dir='left',speed1=40,speed2=40,t=3)

30 | P a g e

N. Robotic Arm with 4 DOF

There are many 4 DOF robotic arms on AliExpress that are relatively inexpensive
to purchase (less than $30). However, be very careful of the quality.

It is very important to check the positions of the servos during construction –
making sure that the middle position of the servos is about 90o.

Connect to the following ports.

• S1 base servo
• S2 left servo up/down
• S3 right servo forward/back
• S4 grabber servo open/closed

The left and right servos are best operated together.

To operate the robotic arm, create four global variables.

#GLOBAL VARIABLES-----------------------------
servo1 = 100 #S1 base
servo2 = 140 #S2 left up/down 120/90 170/30
servo3 = 80 #S3 right forward/back 170/60
servo4 = 160 #S4 grabber open/closed 90/160

Write a function to reset servos to their default positions.

def reset_servos():
 #S1 base, S2 left up/down, #S3 right forward/back, s4 grabber
 cpi.mbot2.servo_set(servo1, 'S1') #base 100, 10 right
 cpi.mbot2.servo_set(servo2, 'S2')
 cpi.mbot2.servo_set(servo3, 'S3')
 cpi.mbot2.servo_set(servo4, 'S4') #90 open 160 closed

Write a function to move the servos slowly between the current position and a new position.

def slow_servo(s, old, new):
 global servo2
 if new > old: step = 1
 else: step = -1
 for angle in range(old,new,step):
 cpi.mbot2.servo_set(angle, s)
 if s == 'S3':
 servo2 = 200 - 0.6 * angle #0.7
 cpi.mbot2.servo_set(servo2, 'S2')
 time.sleep(0.05)
 return new

31 | P a g e

Test the servos to make sure they work well. Servo 2 (up/down) is automatically operated in conjunction with servo 2
(forward/back).

 servo1 = slow_servo('S1', servo1, 140) #base rotate
 servo1 = slow_servo('S1', servo1, 40)
 servo1 = slow_servo('S1', servo1, 100)

 servo4 = slow_servo('S4', servo4, 80) #grabber open
 servo4 = slow_servo('S4', servo4, 160) #closed

 servo3 = slow_servo('S3', servo3, 50) #left
 servo3 = slow_servo('S3', servo3, 160) #left

32 | P a g e

O. Keep the Light Just Right

They automatically turn on car headlights, street lights or house
lights as it gets dark, brighten your phone screen if there is more
sunlight, or turn it down to conserve power when you are inside. If
you are growing food, more hours of light and brighter light will
make plants grow faster.

All these things need light sensors to work. We will use the
built-in light sensor, located above the joystick.

To read and information from sensors, variables must be used to
store the sensor values.

import cyberpi as cpi
import time

while True:
 light = cpi.get_bri()
 cpi.console.println(str(light))
 time.sleep(0.1)

Pass your hand over, then away from, the LED’s.

Let’s draw a graph of the light data instead.

import cyberpi as cpi
import time

while True:
 light = cpi.get_bri()
 cpi.linechart.add(light)
 time.sleep(0.1)

Brighten the led’s in Sunlight

This code makes the led brightness proportional to the light level. When there is more light, the led’s are brighter.

import cyberpi as cpi
import time

while True:
 light = cpi.get_bri()
 cpi.linechart.add(light)
 cpi.led.set_bri(light)
 cpi.led.on(0,0,255)
 time.sleep(0.1)

33 | P a g e

Turn on the Lights When it gets Dark

To turn on the lights as it gets dark we only need to make one small change to the code. If the maximum is only 70,
change the set_bri() function value to (70-light).

import cyberpi as cpi
import time

while True:
 light = cpi.get_bri()
 cpi.linechart.add(light)
 cpi.led.set_bri(100-light)
 cpi.led.on(0,0,255)
 time.sleep(0.1)

Light Level Warning

We can use conditional statements to make a light warning system. In the conditional statement, if a condition is True
then a section of code is executed. If it is False, a different sequence of code is executed (or no code is executed).

import cyberpi as cpi
import time

while True:
 light = cpi.get_bri()
 cpi.linechart.add(light)

 if light < 20:
 cpi.led.on(255,0,0)
 elif light < 40:
 cpi.led.on(255,255,0)
 elif light < 60:
 cpi.led.on(0,255,0)
 else:
 cpi.led.on(0,0,255)

 time.sleep(0.1)

34 | P a g e

P. Rollover Warning

To control a drone in the air requires a sensor called an
accelerometer. It senses the movement of the aircraft.
There are three basic movements of a drone or robot:

• Roll sideways movement
• Pitch forward, back movement
• Yaw rotation or heading

An accelerometer can measure roll, pitch. To measure yaw, a gyroscope is used.

 Roll Pitch Yaw

 –179 to 180 -90 – 90 –180 to 180

The following code draws a graph of the values on the display

import cyberpi as cpi
import time

cpi.reset_yaw()
while True:
 roll = cpi.get_roll()
 pitch = cpi.get_pitch()
 yaw = cpi.get_yaw()

 cpi.linechart.add((roll+200)/4)
 time.sleep(0.2)

As you move the mBot2 the graph will change.

Roll – With the mBot2 facing forward away from you, lower the left side, then lower the right side down.

 cpi.linechart.add((roll+200)/4)

Pitch – Push the front of the mBot2 down, then push the back down.

 cpi.linechart.add((pitch+200)/4)

Yaw – Keeping the mBot2 horizontal, rotate it to the left and right

 cpi.linechart.add((yaw+200)/4)

35 | P a g e

4WD Rollover Warning

An accelerometer can be used to warn when the angles are too
steep. We will create a warning system using LED messages
and sound.

import cyberpi as cpi
import time

while True:
 roll = abs(cpi.get_roll())
 pitch = abs(cpi.get_pitch())

 cpi.console.println(str(pitch) + ', '+ str(roll))

 if pitch > 30 or roll > 30:
 cpi.led.on(255,0,0)
 cpi.audio.play_music(100,0.2)

 elif pitch > 20 or roll >20:
 cpi.led.on(255,255,0)
 cpi.audio.play_music(60,0.2)

 else:
 cpi.led.on(0,255,0)
 time.sleep(0.2)

Carefully move the mBot2 so you test the roll and pitch as described on the previous page. Note the different sounds
produced.

36 | P a g e

Q. Connect Other Sensors

Read Analog Sensors

Read analog sensors (such as potentiometers or soil moisture sensors) using ports S1 and S2

value = cpi.mbot2.read_analog(port) #returns 0 – 5V

Read and Write Digital Sensors

cpi.mbot2.write_digital(val, port) #val = True, False, 0, 1
value = cpi.mbot2.read_digital(port) #returns True, False

37 | P a g e

Appendix 1 CyberPi Extras

Slider (potentiometer) and multi-touch

import cyberpi as cpi
import time

while True:
 pot = cpi.slider.get()
 touch = cpi.multi_touch.is_touch(ch = 1) #1-8 or ch = "any"
 print(distance, pot, touch)
 time.sleep(0.1)

38 | P a g e

Appendix 2. RoboRave a-Maze-ing Track Details

	March 2023 bbutl58@eq.edu.au
	A. The mBot2 Vehicle
	B. Introduction and Setup
	C. Our First Program – Hello
	D. Turn on the Lights
	Try different combinations of lights and make your own patterns. Use the time.sleep command to create delays between lights.
	Turn on Lights using the Joystick
	Continue exploring different light patterns for each joystick direction.

	Finding and Correcting Errors

	E. Information Display
	Change each of the three values and see what happens.

	F. Ringtones and Sound Bites
	G. Run the Motors
	Code Templates
	CHALLENGES
	1. Place one or more large objects on the floor. Navigate the mBot2 through and/or around them.
	2. One of the RoboRAVE competitions is AMAZE-ing. It consists of a series of boards that make up a maze. You do not know the shape of the maze until the competition. The person who keeps the robot on the boards and has the fastest time wins.
	CHALLENGES
	3. Place two small objects on the floor at least 1m apart. Drive around these multiple times in a figure of 8. When you turn use the led’s to indicate your turns.
	4. Place a large object on the floor and turn around the object 3 times in a large, smooth circle. (Use the cpi.mbot2.drive_power() function)

	H. Avoid or Seek
	CHALLENGES
	5. Place 4 objects at the corners of a square. Find one of them and stop just before you hit it. Turn and find the next object, until you have found all four.
	6. Find your way autonomously through a simple maze (sides are 10cm high)

	I. Detect and Follow a Simple Line
	Place the mBot2 inside a Sumo mat (white border on black background) or a white mat with a black border. Use code similar to that used for obstacle avoidance if a line is detected.
	Challenges
	1. Oval or Circuit Race. Follow an oval line or a more complicated circuit from start to finish. Time the run. The robot that does the quickest time wins.
	2. Follow a line from beginning to end. How will you detect the end?

	J. Grabbers and Other Mechanics
	K. SumoBot Competition
	L. Line Follower with Intersections
	CHALLENGES
	6. RoboRAVE Line Follower Competition. Be the fastest robot to get from home to the box.

	M. Mecanum Wheels
	N. Robotic Arm with 4 DOF
	O. Keep the Light Just Right
	Brighten the led’s in Sunlight
	Light Level Warning

	P. Rollover Warning
	4WD Rollover Warning

	Q. Connect Other Sensors
	Appendix 1 CyberPi Extras
	Appendix 2. RoboRave a-Maze-ing Track Details

